Publications

Publications2023-06-30T14:35:38+00:00

Latest Publications

Engineered Second-Order Nonlinearity in Silicon Nitride.

We overcome this drawback and demonstrate a successful induction of χ(2) in Si3N4 through electrical poling with an externally-applied field to align the Si-N bonds. This alignment breaks the centrosymmetry of Si3N4, and enables the bulk χ(2). The sample is heated to over 500°C to facilitate the poling. The comparison between the EO responses of poled and non-poled Si3N4, measured using a Si3N4 micro-ring modulator, shows an enhancement in the amplitude of the measured EO responses as well as a remarkable improvement in its speed from 3GHz to at least 15GHz (3dB bandwidth) after the poling, which confirms the χ(2) nature of the EO response induced by poling.

On-Chip Weak Value Amplification

Weak value amplification is a technique that allows interferometric signal enhancement without amplifying technical noises. We implement weak value amplification on an integrated Mach-Zehnder interferometer by spatial and temporal phase engineering of the optical wave in waveguides. We achieve 7 dB signal-to-noise ratio improvement over standard integrated Mach-Zehnder interferometer (equal detected optical power) in a heat-induced phase shift measurement. Also, by adding ring resonator to the weak value interferometer as dispersive element, we detect an optical frequency shift down to 2 kHz.

Publications

2023

  • Granados-Baez, A. Mukherjee, L. Qiu, C. Chakraborty, A. N. Vamivakas, and J. Cardenas, “Characterization of the on-chip cavity coupled emission of 2D materials at room temperature,” 13(4), 843 – 849 (2023).
  • Y. Zhang, J. Nauriyal, M. Song, M. Granados-Baez, X. He, T. MacDonald, and J. Cardenas, “Engineered second-order nonlinearity in silicon nitride,” 13(1), 237 – 246 (2023). Preprint: arXiv:2210.09374.

2022

  • X. He, L. Cortes-Herrera, K. Opong-Mensah, Y. Zhang, G. P. Agrawal, and J. Cardenas, “Electrically induced adiabatic frequency conversion in an integrated lithium niobate ring resonator,” Opt. Letters, 47(22), 5849 – 5852 (2022). 10.1364/OL.473113.
  • J. Sanchez-Juarez, M. Granados-Baez, A. Aguilar-Lasserre, and J. Cardenas, “Intelligent decision support system to optimize 2D materials detection using digital image processing and deep learning,” Opt. Mat. Express 12(5), 1856 – 1868 (2022).
  • J. Steinmetz, K. Lyons, M. Song, J. Cardenas, and A. N. Jordan, “Enhanced on-chip frequency measurement using weak value amplification,” Opt. Express 30(3), 3700 – 3718 (2022). Preprint: arXiv:2103.15752.

2021

  • L. Cortes-Herrera, X. He, J. Cardenas, and G.P. Agrawal, “Design of an X-cut thin-film lithium niobate waveguide as a passive polarization rotator,” Opt. Express 29(26), 44174 – 44188 (2021).
  • M. Song, J. Steinmetz, Y. Zhang, J. Nauriyal, K. Lyons, A. N. Jordan, and J. Cardenas, “Enhanced on-chip phase measurement by inverse weak value amplification,” Nature Comms. 12(1), 1-7 (2021).
  • J. Guimbao, L. Sanchis, L.M. Weituschat, J. M. Llorens, M. Song, J. Cardenas, and P.A. Postigo, “Machine learning optimization of a nanophotonic cavity for near unity photon indistinguishability at room temperature,” arXiv:2110.15000 (2021)*.
  • L. Cortes-Herrera, X. He, J. Cardenas, and G. P. Agrawal, “Coupled-mode theory of the polarization dynamics inside a microring resonator with a uniaxial core,” Phys. Rev. A 103 (6), 063517 (2021).
  • S. Roberts, X. Ji, J. Cardenas, M. Corato-Zanarella, and M. Lipson, “Measurements and modeling of atomic-scale sidewall roughness and losses in integrated photonic devices,” arXiv:2105.11477 (2021)*.

2020

  • A. Mohanty, Q. Li, A. M. Tadayon, S. P. Roberts, G. R. Bhatt, E. Shim, X. Ji, J. Cardenas, S. A. Miller, A. Kepecs, and M. Lipson, “Reconfigurable nanophotonic silicon probes for sub-millisecond deep-brain optical stimulation,” Nature Biomedical Engineering, 1-9 (2020). Pre-print: arXiv:1805.11663

2019

  • S. Saini, S. Preble, M. Popović, J. Cardenas, A. Kost, E. Verlage, G. Howland, and L. C. Kimerling. “Integrated photonics and application-specific design on a massive open online course platform,” In Education and Training in Optics and Photonics, p. 11143_151. Optical Society of America, 2019.
  • J. Nauriyal, M. Song, R. Yu, and J. Cardenas, “Fiber-to-chip fusion splicing for low-loss photonic packaging,” Optica 6, 549 – 552 (2019).

2018

  • J. Nauriyal, R. Yu, M. Song, and J. Cardenas, “Fiber to chip fusion splicing for robust, low loss photonic packaging,” arXiv:1810.09531 (2018).
  • Y. Okawachi, M. Yu, J. Cardenas, X. Ji, A. Klenner, M. Lipson, and A. L. Gaeta, “Carrier envelope offset detection via simultaneous supercontinuum and second-harmonic generation in a silicon nitride waveguide,” Opt. Lett., 43(19), 4627-4630 (2018).
  • A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawchi, K. Luke, A. L. Gaeta, and M. Lipson, “On-chip dual-comb spectroscopy,” Sci. Adv. 4(3), e1701858 (2018).
  • A. Mohanty, Q. Li, M. A. Tadayon, G. Bhatt, E. Shim, X. Ji, J. Cardenas, S. A. Miller, A. Kepecs, and M. Lipson, “A reconfigurable nanophotonics platform for sub-millisecond, deep brain neural stimulation,” arXiv:1805.11663 (2018).

2017

2016

2015

2014

2013

2012

2011

2010

2008

2006

2004

Go to Top